jueves, 16 de marzo de 2017

B4. Act. 25. Porcentaje y gráfica de pastel. 16/3/17

B4. Act. 25. Porcentaje y gráfica de pastel. 16/3/17


Actividad. Calcula el porcentaje de cada una de las siguientes situaciones y crea la gráfica de pastel correspondiente.

Juanita le compró unos tenis a su hijo que costaron 1500, si dió los siguientes abonos lunes 540, martes 260, miércoles 400, jueves 50 y el resto el viernes.

Juan tiene una tienda de abarrotes en la que se vendió en una semana los siguientes productos: Sabritas 10, yogurth 15, refresco 20, cigarros 40, cerveza 50.

Alberto vendió refrescos de diferentes sabores piña 15, mango 23, fresa 5, uva 2, guayaba 30, manzana 70.










miércoles, 15 de marzo de 2017

24

24


Actividad. Calcula el porcentaje de cada una de las siguientes situaciones y crea la gráfica de pastel correspondiente.

Las ventas de un restaurante en una semana son lunes 75 martes 43 miércoles 67 jueves 95 viernes 56 sábado 41.

En una tienda la cantidad de productos de limpieza vendidos son fabuloso 29 cloralex 35 ariel 63 salvo 42 ace 9.

23

23


Actividad. Analiza el siguiente grupo de datos y calcula el porcentaje.


Luis vende chicles, las cantidadesd en una semana fueron:

Lunes 109
Martes 100
Miércoles 81
Jueves 134
Viernes 31.


En una tienda de ropa las cantidades de colores de prendas más vendidos son rojo 28 verde 70 blanco 63 azul 55 gris 69 rosa 47 morado 39 café 52 negro 61.

Se hizo una competencia para saber quien vendía mas pasteles Luis vendió 12, 7, 14, Carlos 5, 13, 15, Miguel vendió 3, 2, 17.










B4. .22

B4. 22

Tema. Gráfica de pastel.

Una gráfica de pastel se utiliza para representar el porcentaje de un grupo de datos.

Al tener un grupo de datos se calcula el porcentaje correspondiente de cada uno.

Ejemplo. Carlos decidió preguntar a sus compañeros cuáles son sus colores preferidos para ello realiza la siguiente tabla, al tener las respuestas calcula el porcentaje para cada una.


Para calcular el porcentaje de cada cantidad se realiza lo siguiente para cada uno.

Después de calcular el porcentaje correspondiente se realiza la gráfica de pastel.


Actividad. Analiza el siguiente grupo de datos y calcula el porcentaje.

Las calificaciones de un grupo son:



Luis gana a la semana las siguientes cantidades.

Lunes 250
Martes 340
Miércoles 280
Jueves 170
Viernes 450

María vende a la semana diversas cantidades de chocolates.

Lunes 75
Martes 46
Miércoles 89
Jueves 54
Viernes 95










viernes, 10 de marzo de 2017

B4. Act. 21. Examen. 10/3/17

B4. Act. 21. Examen. 10/3/17



Actividad. Examen pegado y firmado por el padre o tutor.





B4. Act. 20. Área del segmento del círculo. 10/3/17

B4. Act. 20. Área del segmento del círculo. 10/3/17


Actividad. Calcula el área complementaria para cada segmento de círculo.



Ángulo 27°.  Radio 6.1cm.

Ángulo 12° Radio 4cm

Ángulo 16° Radio 2.8cm

Ángulo 25° Radio 2.5cm










B4. Act. 19. Área del segmento del círculo. 9/3/17

B4. Act. 19. Área del segmento del círculo. 9/3/17



Actividad. Calcula el área complementaria para cada segmento de círculo.


Ángulo 21°.  Radio 2.1cm.

Ángulo 59°.  Radio 1.4cm.

Ángulo 35°.  Radio 5.2cm.

Ángulo 18°.  Radio 4.3cm.

Ángulo 27°.  Radio 6.1cm.














martes, 7 de marzo de 2017

B4. Act. 18. Área del segmento del círculo. 8/3/17

B4. Act. 18. Área del segmento del círculo. 8/3/17



Actividad. Calcula el área de los segmento de círculos de acuerdo a sus datos.


Ángulo 110° Radio 6cm

Ángulo 73° Radio 3.2cm

Ángulo 91° Radio 2.5cm

Ángulo 100° Radio 7cm

Ángulo 32° Radio 4cm








lunes, 6 de marzo de 2017

B4. Act. 17. Área del segmento del círculo. 6/3/17

B4. Act. 17. Área del segmento del círculo. 6/3/17


Tema. Área del segmento del círculo.

Para calcular el área de un círculo se utiliza la fórmula π x r², pero qué pasaría si sólo me piden un segmento del área de un círculo, tendría que utilizar la fórmula:

Ejemplo: Cuál es el área del siguiente segmento de círculo.

Actividad. Calcula el área de los segmento de círculos de acuerdo a sus datos.

Ángulo 210°.  Radio 5cm.

Ángulo 95°.  Radio 3.2cm.

Ángulo 135°.  Radio 2.5cm.

Ángulo 180°.  Radio 1.5cm.

Ángulo 270°.  Radio 2.1cm.











B4. Act. 16. Área de círculo. 16/3/17

B4. Act. 16. Área de círculo. 16/3/17



Actividad. Calcula el área de los siguientes círculos de acuerdo a las medidas proporcionadas.


Diámetros.

3.6cm

1.7cm

5.2cm

9.1cm

8.5cm

.46cm



Radios.

.18cm

2.9cm

4.7cm

2.2cm

7.4cm

3.9cm











miércoles, 1 de marzo de 2017

B4. Act. 15. Área del círculo. 1/3/17

B4. Act. 15. Área del círculo. 1/3/17


Tema. Cálculo del área del círculo.

Método 1. Cálculo de área a partir de radio.

La fórmula que se usa es:

A=π x r²

El valor de π corresponde a 3.14

El valor del radio se eleva al cuadrado, es decir, este valor se multiplica por si mismo, si el radio fuera 3cm, se multiplicaría 3 x 3, quedando en 9.

Por último se multiplica 3.14 por 9. En este caso el área sería 28.26cm²

Ejemplo.


Método 2. Cálculo del área a partir del diámetro.

Lo único que se debe hacer es dividir la cantidad del diámetro entre 2.

El resultado corresponde a la medida del radio, a partir de este dato se realiza el procedimiento del método 1.

Ejemplo.


Actividad. Calcula el área de los siguientes círculos de acuerdo a las medidas proporcionadas.


Diámetros.

4.4cm

2.4cm

5.4cm

8.2cm

10.6cm

1.4cm

Radios.

3.1cm

4.2cm

7.5cm

12.2cm

4.7cm

9.3cm

B4. Act. 14. Longitud de la circunferencia. 28/2/17

B4. Act. 14. Longitud de la circunferencia. 28/2/17


Actividad. Calcula la longitud de la circunferencia de acuerdo a las medidas.


Diámetros.

3.5cm
5.6cm
7.8cm
11.4cm
6.7cm

Radios.

2.9cm
1.6cm
4.7cm
8.2cm
10.7cm











B4. Act. 13. Longitud de la circunferencia. 27/2/17

B4. Act. 13. Longitud de la circunferencia. 27/2/17


Tema. Longitud de la circunferencia.

Para calcular la medida de la circunferencia se debe multiplicar el diámetro por el valor de pi (3.14).

L=π×d

Ejemplo.



Cuál es la longitud de una circunferencia cuyo diámetro es 10 cm.

L=π x d
L=3.14 x 10cm
L=31.4cm




Actividad. Calcula la longitud de la circunferencia si los diámetros son:



Diámetros.


13cm, 11cm, 23cm, 7cm, 8cm

Radios.

5cm, 9cm, 12cm, 3.5cm, 4.5cm







jueves, 23 de febrero de 2017

B4. Act. 12. Operaciones básicas. 23/2/17

B4. Act. 12.  Operaciones básicas. 23/2/17


Actividad. Resuelve las siguientes operaciones, convierte el resultados número decimal



5/8:3/5=

4/3:6/4=

5/10:2/8=

2/6:3/8=

4/9:4/8=

6/3:8/4=

3/13:9/5=

4/6:3/7=

9/2:8/15=

5/8:9/4=

6/7:2/12=




4/8*6/4=

8/6*5/6=

2/3*5/7=

4/5*5/6=

8/3*4/9=

5/3*9/20=

35/40*7/2=

7/6*3/16=

21/35*3/7=









B4. Act. 11. Operaciones básicas. 22/2/17

B4. Act. 11. Operaciones básicas. 22/2/17



Actividad. Resuelve las siguientes operaciones aplicando el proceso correspondiente.




9/6*.5=

5/4*.9

5/8*.8

6/6*.7

8/8*1.3

2/3*.5

1/6*.10

7/9*3.2

9/5*5.9

9/8*.4





8/40÷.2

.78÷1/8

1/6÷.76

9/5÷.5

3/4÷.7

9/4÷.73

6/5÷.5

3/8÷.4

1/5÷.8









B4. Act. 10. Operaciones básicas. 21/2/17

B4. Act. 10. Operaciones básicas. 21/2/17



Actividad. Resuelve las siguientes operaciones, para las multiplicaciones y divisiones convierte los números fraccionarios a decimales.



6/9:.4=

.8:3/9=

.25:3/8=

1.2:8/5=

6/4:.9=

2.4:2/3=

.25:5/3=




5/6*.05=

3.7*1/6=

2/3*.25=

5/6*.75=

7/9*.12=

.8*1/7=

.75*1/5=









miércoles, 15 de febrero de 2017

B4. Act. 9. Operaciones básicas. 17/2/17

B4. Act. 9. Operaciones básicas. 17/2/17


Actividad. Resuelve las siguientes operaciones, para las multiplicaciones y divisiones convierte los números fraccionarios a decimales.



7/24+5/6=

2/3+4/9=

5/15+9/20=

35/40+4/5=

6/9+3/16=

21/35+3/18=

12/20+9/35=




5/6-2/3=

5/4-1/6=

2/3-1/4=

5/6-3/4=

7/9-1/6=

4/5-1/7=

3/4-1/5=











B4. Act. 8. Ley de signos. 16/2/17

B4. Act. 8. Ley de signos. 16/2/17



Actividad. Resuelve las siguientes operaciones con decimales, identifica qué tipo de operación corresponde. En el caso de las divisiones deja el resultado hasta décimos.


1.345+12.4311=

-133.04-183.2=

-13.35-84.213=

0.31+.00013=

-12.98-4.87=



-37.311+8.32=

6.53-3.13=

33.57-1.89=

-4.309+9.13=

-18.2+13.21=



-4.2*-2.34=

-21.02*-9.7=

3.56*-8.3=

3.12*9.3=

-7.4*5.03=



12.5÷-3.4=

87÷1.2=

-34.2÷-4.5=

453÷-2.1=

49÷-2.6